- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- + 多面体与球体内切外接问题
- 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于四面体
,有以下命题:①若AB=AC=AD,则AB,AC,AD与底面所成的角相等;②若AB⊥CD,AC⊥BD,则点A在底面BCD内的射影是△BCD的内心;③四面体
的四个面中最多有四个直角三角形;④若四面体
的6条棱长都为1,则它的内切球的表面积为
,其中正确的命题是




A.①③ | B.③④ | C.①②③ | D.①③④ |
底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥
,该四棱锥的侧面积为
,则该半球的体积为( )




A.![]() | B.![]() | C.![]() | D.![]() |
数学名著《九章算术》中有如下的问题:“今有刍童,下广三尺,袤四尺,上袤一尺,无广,高一尺”,意思是:今有底面为矩形的屋脊状楔体,两侧面为全等的等腰梯形,下底面宽3尺,长4尺,上棱长1尺,高1尺(如图),若该几何体所有顶点在一个球体的表面上,则该球体的表面积为( )平方尺


A.![]() ![]() | B.26![]() | C.49![]() | D.50![]() |
三棱锥P-ABC的四个顶点都在体积为
的球的表面上,底面ABC所在的小圆面积为16π,则该三棱锥的高的最大值为( )

A.4 | B.6 | C.8 | D.10 |