- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- + 多面体与球体内切外接问题
- 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知某圆柱形容器的轴截面是边长为2的正方形,容器中装满液体,现向此容器中放入一个实心小球,使得小球完全被液体淹没,则此时容器中所余液体的最小容量为( )
A.![]() | B.![]() | C.![]() | D.![]() |
在三棱锥S﹣ABC中,SA⊥平面ABC,AB⊥BC,且SA=2,AB=1,BC
,则三棱锥S﹣ABC外接球的表面积为( )

A.4π | B.6π | C.8π | D.10π |
已知三棱锥A﹣BCD内接于球O,且AD=BC=3,AC=BD=4,AB=CD
,则三棱锥A﹣BCD的外接球的表面积是( )

A.38π | B.9π | C.76π | D.19π |
如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为O.E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )


A.![]() | B.![]() | C.![]() | D.![]() |
点A,B,C,D在同一个球的球面上,AB=BC=
,∠ABC=90°,若四面体ABCD体积的最大值为3,则这个球的表面积为

A.![]() | B.![]() | C.![]() | D.![]() |