- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 球的体积的有关计算
- 球的表面积的有关计算
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知三棱锥
,
两两垂直且长度均为6,长为2的线段
的一个端点
在棱
上运动,另一个端点
在
内运动(含边界),则
的中点
的轨迹与三棱锥的面所围成的几何体的体积为











A.![]() | B.![]() ![]() | C.![]() | D.![]() ![]() |
在底面直径为6的圆柱形容器中,放入一个半径为2的冰球,当冰球全部溶化后,容器中液面的高度为_______________.(相同质量的冰与水的体积比为10:9)
古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形是阿基米德最引以为自豪的发现.现有一底面半径与高的比值为1:2的圆柱,则该圆柱的体积与其内切球的体积之比为( )


A.![]() | B.![]() | C.2 | D.![]() |
如图,在三棱锥
中,
,
,
两两互相垂直,
,点
,
分别在侧面
、棱
上运动,
,
为线段
中点,当
,
运动时,点
的轨迹把三棱锥
分成上、下两部分的体积之比等于( )


















A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,某铁制零件由一个正四棱柱和一个球组成,已知正四棱柱底面边长与球的直径均为1cm,正四棱柱的高为2cm.现有这种零件一盒共50kg,取铁的密度为
,
.

(1)估计有多少个这样的零件;
(2)如果要给这盒零件的每个零件表面涂上一种特殊的材料,则需要能涂多少平方厘米的材料(球与棱柱接口处的面积不计,结果精确到
)?



(1)估计有多少个这样的零件;
(2)如果要给这盒零件的每个零件表面涂上一种特殊的材料,则需要能涂多少平方厘米的材料(球与棱柱接口处的面积不计,结果精确到
