- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 柱、锥、台的表面积
- 棱柱表面积的有关计算
- 圆柱表面积的有关计算
- 棱锥表面积的有关计算
- 圆锥表面积的有关计算
- 棱台表面积的有关计算
- 圆台表面积的有关计算
- 柱、锥、台的体积
- 球的体积和表面积
- 组合体的表面积和体积
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,圆形纸片的圆心为
,半径为
,该纸片上的正方形
的中心为
为圆
上的点,
分别是以
为底边的等腰三角形.沿虚线剪开后,分别以
为折痕折起
,使得
重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.











定义八个顶点都在某圆柱的底面圆周上的长方体叫做圆柱的内接长方体,圆柱也叫长方体的外接圆柱,设长方体
的长、宽、高分别为
(其中
),那么该长方体的外接圆柱侧面积的最大值是( )



A.![]() | B.![]() | C.![]() | D.![]() |
如图,某甜品创作一种冰淇淋,其上半部分呈半球形,下半部分呈圆锥形,现把半径为
的圆形蛋皮等分成5个扇形,用一个扇形蛋皮固成圆锥的侧面(蛋皮厚度忽略不计).
(1)这种蛋筒的表面积;
(2)若要制作500个这样的蛋筒,需要多少升冰淇淋?(精确到0.1L)

(1)这种蛋筒的表面积;
(2)若要制作500个这样的蛋筒,需要多少升冰淇淋?(精确到0.1L)
