- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 柱、锥、台的表面积
- 棱柱表面积的有关计算
- 圆柱表面积的有关计算
- 棱锥表面积的有关计算
- 圆锥表面积的有关计算
- 棱台表面积的有关计算
- 圆台表面积的有关计算
- 柱、锥、台的体积
- 球的体积和表面积
- 组合体的表面积和体积
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆锥的顶点为
,底面圆心为
,母线长为
,
,
、
是底面半径,且:
,
为线段
的中点,
为线段
的中点,如图所示:

(1)求圆锥的表面积;
(2)求异面直线
和
所成的角的大小,并求
、
两点在圆锥侧面上的最短距离.












(1)求圆锥的表面积;
(2)求异面直线




边长为1的正方形
(及其内部)绕的
旋转一周形成圆柱,如图,
长为
,
长为
,其中
与
在平面
的同侧.

(1)求二面角
的大小;(结果用反三角函数值表示)
(2)用一平行于
的平面去截这个圆柱,若该截面把圆柱侧面积分成
两部分,求
与该截面的距离;
(3)求线段
,
绕着
旋转
所形成的几何体的表面积.










(1)求二面角

(2)用一平行于



(3)求线段




已知椭圆
的左右两焦点分别为
、
.
(1)若矩形
的边
在
轴上,点
、
均在
上,求该矩形绕
轴旋转一周所得圆柱侧面积
的取值范围;
(2)设斜率为
的直线
与
交于
、
两点,线段
的中点为
(
),求证:
;
(3)过
上一动点
作直线
,其中
,过
作直线
的垂线交
轴于点
,问是否存在实数
,使得
恒成立,若存在,求出
的值,若不存在,说明理由.



(1)若矩形








(2)设斜率为









(3)过











如图,正方体ABCD-A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥.求:
(1)三棱锥A′-BC′D的表面积与正方体表面积的比值;
(2)三棱锥A′-BC′D的体积.