- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间几何体的结构
- 空间几何体的三视图和直观图
- + 空间几何体的表面积与体积
- 柱、锥、台的表面积
- 柱、锥、台的体积
- 球的体积和表面积
- 组合体的表面积和体积
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在以
为顶点的五面体中,底面
是矩形,
.

(1)证明:
平面
;
(2)在中国古代数学经典著作《九章算术》中,称图中所示的五面体
为“刍甍”(chúméng),书中将刍甍
的体积求法表述为:
术曰:倍下袤,上袤从之,以广乘之,又以高乘之,六而一.其意思是:若刍甍
的“下袤”
的长为
,“上袤”
的长为
,“广”
的长为
,“高”即“点
到平面
的距离”为
,则刍甍
的体积
的计算公式为:
,证明该体积公式.




(1)证明:


(2)在中国古代数学经典著作《九章算术》中,称图中所示的五面体


术曰:倍下袤,上袤从之,以广乘之,又以高乘之,六而一.其意思是:若刍甍













如图,在四棱锥
中,侧棱
底面
,底面
为长方形,且
,
是
的中点,作
交
于点
.

(1)证明:
平面
;
(2)若三棱锥
的体积为
,求直线
与平面
所成角的正弦值;
(3)在(2)的条件下,求二面角
的余弦值.











(1)证明:


(2)若三棱锥




(3)在(2)的条件下,求二面角

《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有仓,广三丈,袤四丈五尺,容粟一万斛,问高几何?”其意思为:“今有一个长方体(记为
)的粮仓,宽3丈(即
丈),长4丈5尺,可装粟一万斛,问该粮仓的高是多少?”已知1斛粟的体积为2.7立方尺,一丈为10尺,则下列判断正确的是__________ .(填写所有正确结论的编号)
①该粮仓的高是2丈;
②异面直线
与
所成角的正弦值为
;
③长方体
的外接球的表面积为
平方丈.


①该粮仓的高是2丈;
②异面直线



③长方体

