- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间几何体的结构
- 空间几何体的三视图和直观图
- + 空间几何体的表面积与体积
- 柱、锥、台的表面积
- 柱、锥、台的体积
- 球的体积和表面积
- 组合体的表面积和体积
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”若圆周率约为3,估算出堆放的米约有( )立方尺


A.![]() | B.![]() | C.![]() | D.![]() |
在
中,
,
,
,
是
中点(如图1).将
沿
折起到图2中
的位置,得到四棱锥
.


(1)将
沿
折起的过程中,
平面
是否成立?并证明你的结论;
(2)若
,过
的平面交
于点
,且
为
的中点,求三棱锥
的体积.












(1)将




(2)若







正方体ABCDA1B1C1D1中,E 为线段B1D1上的一个动点,则下列结论中正确的是________.(填序号)
①AC⊥BE;
②B1E∥平面ABCD;
③三棱锥EABC的体积为定值;
④直线B1E⊥直线BC1.
①AC⊥BE;
②B1E∥平面ABCD;
③三棱锥EABC的体积为定值;
④直线B1E⊥直线BC1.
祖暅原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,意思是两个同高的几何体,如在等高处截面的面积恒相等,则体积相等.已知某不规则几何体与如图所示的几何体满足“幂势同”,则该不规则几何体的体积为( )


A.![]() | B.![]() | C.![]() | D.![]() |