- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间几何体
- 点、直线、平面之间的位置关系
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在长方体ABCD-A1B1C1D1中,AB=BC,E,F分别是AB1,BC1的中点.有下列结论:

①EF⊥BB1;
②EF∥平面A1B1C1D1;
③EF与C1D所成角为45°;
④EF⊥平面BCC1B1.
其中不成立的是( )

①EF⊥BB1;
②EF∥平面A1B1C1D1;
③EF与C1D所成角为45°;
④EF⊥平面BCC1B1.
其中不成立的是( )
A.②③ |
B.①④ |
C.③④ |
D.①③ |
如图,AB是圆O的直径,点C是圆O上的动点,过动点C的直线SC垂直于圆O所在的平面,D,E分别是SA,SC的中点.
证明:
平面ABC
平面
平面SBC
证明:




已知一块正方形薄铁片的边长为8cm,以它的一个顶点为圆心,一边长为半径画弧,沿弧剪下一个扇形
如图
,若用这块扇形铁片围成一个无底的圆锥,则这个无底的圆锥的容积为______
.




如图所示,在矩形ABCD中,AB=3
,BC=3,沿对角线BD将△BCD折起,使点C移到C′点,且C′点在平面ABD上的射影O恰在AB上.

(1)求证:BC′⊥平面AC′D;
(2)求点A到平面BC′D的距离.


(1)求证:BC′⊥平面AC′D;
(2)求点A到平面BC′D的距离.
在棱长为1的正方体
中,平面
与正方体每条棱所成的角均相等,则平面
截正方体所形成的三角形截面中,截面面积最大值为_____________.



如图,在四棱锥
中,
平面
,
是平行四边形,
,
交于点
是
上一点.

(1)求证:
;
(2)已知二面角
的余弦值为
,若
为
的中点,求
与平面
所成角的正弦值.









(1)求证:

(2)已知二面角






现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.
