- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 一元二次不等式与二次函数、一元二次方程的关系
- 一元二次不等式在实数集上恒成立问题
- + 一元二次不等式在某区间上的恒成立问题
- 一元二次不等式在某区间上有解问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数f(x)的定义域为D,若存在非零实数n使得对于任意x∈M(M⊆D),有x+n∈D,且f(x+n)≥f(x),则称f(x)为M上的n高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的k高调函数,那么实数k的取值范围是________.
已知函数
(
,
为实数),
.
(1)若函数
的最小值是
,求
的解析式;
(2)在(1)的条件下,
在区间
上恒成立,试求
的取值范围;
(3)若
,
为偶函数,实数
,
满足
,
,定义函数
,试判断
值的正负,并说明理由.




(1)若函数



(2)在(1)的条件下,



(3)若








已知函数
,
,如果对于定义域
内的任意实数
,对于给定的非零常数
,总存在非零常数
,恒有
成立,则称函数
是
上的
级类增周期函数,周期为
,若恒有
成立,则称函数
是
上的
级类周期函数,周期为
.
(1)已知函数
是
上的周期为1的2级类增周期函数,求实数
的取值范围;
(2)已知
,
是
上的
级类周期函数,且
是
上的单调增函数,当
时,
,求实数
的取值范围.
















(1)已知函数



(2)已知









已知函数
在区间
上有最大值4,最小值1,设函数
.
(1)求
、
的值及函数
的解析式;
(2)若不等式
在
时恒成立,求实数
的取值范围;
(3)如果关于
的方程
有三个相异的实数根,求实数
的取值范围.



(1)求



(2)若不等式



(3)如果关于



设p:∃x0∈R,使得x02+2ax0+2+a=0成立;q:∀x>0,不等式x2﹣2x+a>0恒成立.若“p∧q”为真命题,求实数a的取值范围.