- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- + 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
数列
满足:a1=1,a2=-1,a3=-2,an+2=an+1-an(
),则数列
的前2019项的和为



A.1 | B.—2 | C.-1514 | D.-1516 |
(本小题共
分)
若
或
,则称
为
和
的一个
位排列,对于
,将排列
记为
,将排列
记为
,依此类推,直至
,对于排列
和
,它们对应位置数字相同的个数减去对应位置数字不同的数,叫做
和
的相关值,记作
,例如
,则
,
,若
,则称
为最佳排列.
(Ⅰ)写出所有的最佳排列
.
(Ⅱ)证明:不存在最佳排列
.
(Ⅲ)若某个
(
是正整数)为最佳排列,求排列
中
的个数.

若






















(Ⅰ)写出所有的最佳排列

(Ⅱ)证明:不存在最佳排列

(Ⅲ)若某个




“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为1,1,2,3,5,8
,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列
为“斐波那契”数列,
为数列
的前
项和,若
则
__________.(用M表示)






