- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- + 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于函数
,部分
和
的对应关系如下表:
数列
满足:
,且对于任意的
,点
都在函数
的图像上,则
______.



![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
![]() | 3 | 7 | 5 | 9 | 6 | 1 | 8 | 2 | 4 |
数列






若定义在R上的函数
满足:对于任意实数x、y,总有
恒成立,我们称
为“类余弦型”函数.
已知
为“类余弦型”函数,且
,求
和
的值;
在
的条件下,定义数列
2,3,
求
的值.
若
为“类余弦型”函数,且对于任意非零实数t,总有
,证明:函数
为偶函数,设有理数
,
满足
,判断
和
的大小关系,并证明你的结论.





















