- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- + 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
的前n项和
(n为正整数).
(1)令
,求证数列
是等差数列;
(2)求数列
的通项公式;
(3)令
,
。是否存在最小的正整数
,使得对于
都有
恒成立,若存在,求出
的值。不存在,请说明理由.


(1)令


(2)求数列

(3)令






已知数列
的前n项和
满足:
(a为常数,且
).
(Ⅰ)求
的通项公式; (Ⅱ)设
,若数列
为等比数列,求a的值;
(Ⅲ)在满足条件(Ⅱ)的情形下,设
,数列
的前n项和为Tn .
求证:
.




(Ⅰ)求



(Ⅲ)在满足条件(Ⅱ)的情形下,设


求证:

已知函数
(
为常数,
),且数列
是首项为
,公差为
的等差数列.
(1) 若
,当
时,求数列
的前
项和
;
(2)设
,如果
中的每一项恒小于它后面的项,求
的取值范围.






(1) 若





(2)设



已知函数
,设曲线
在点
处的切线与
轴的交点为
,其中
为正实数.
(1)用
表示
;
(2)
,若
,试证明数列
为等比数列,并求数列
的通项公式;
(3)若数列
的前
项和
,记数列
的前
项和
,求
.






(1)用


(2)




(3)若数列






