- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- + 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知定义在
上的奇函数
满足
,且对任意
有
.
(Ⅰ)判断
在
上的奇偶性,并加以证明.
(Ⅱ)令
,
,求数列
的通项公式.
(Ⅲ)设
为
的前
项和,若
对
恒成立,求
的最大值.





(Ⅰ)判断


(Ⅱ)令



(Ⅲ)设






.设
,对
的任意非空子集A,定义
为A中的最小元素,当A取遍
的所有非空子集时,对应的
的和为
,则:①
=__________②
=___________.








已知
,函数
且
.
(1)求p,q的值以及函数
的表达式,并写出
的定义域D;
(2)设函数
,A=
,集合
,当
时,求实数k的取值范围;
(3)当
时,设
,数列
的前n项和为
,直线
的斜率为
,是否存在实数
,使
对一切
恒成立,若存在,分别求出实数
的取值范围,若不存在,说明理由.



(1)求p,q的值以及函数


(2)设函数




(3)当









