刷题宝
  • 刷题首页
题库 高中数学

题干

已知数列的前n项和(n为正整数).
(1)令,求证数列是等差数列;
(2)求数列的通项公式;
(3)令,。是否存在最小的正整数,使得对于都有恒成立,若存在,求出的值。不存在,请说明理由.
上一题 下一题 0.99难度 解答题 更新时间:2012-06-04 09:41:34

答案(点此获取答案解析)

同类题1

已知是公差为3的等差数列,数列满足:,则的前项和为______________.

同类题2

已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则= ()
A.1B.-1C.2D.±1

同类题3

已知数列是等差数列,前项和为,满足,给出下列四个结论:①;②; ③; ④最小.其中一定正确的结论是________ (只填序号).

同类题4

已知等差数列的公差,且,的前项和为.
(1)求的通项公式;
(2)若成等比数列,求的值.

同类题5

已知函数的图象过原点,且关于点成中心对称.
(1)求函数的解析式;
(2)若数列满足,,试证明数列为等比数列,并求出数列的通项公式.
相关知识点
  • 数列
  • 等差数列
  • 等比数列
  • 错位相减法求和
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)