- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 等比数列的定义
- + 等比数列的通项公式
- 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 等比数列的性质
- 等比数列的函数特性
- 等比数列的前n项和
- 等比数列前n项和的性质
- an与Sn的关系——等比数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,则该人第五天走的路程为( )
A.48里 | B.24里 | C.12里 | D.6里 |
如图,O坐标原点,从直线y
x+1上的一点
作x轴的垂线,垂足记为Q1,过Q1作OP1的平行线,交直线y
x+1于点
,再从P2作x轴的垂线,垂足记为Q2,依次重复上述过程得到一系列点:P1,Q1,P2,Q2,…,Pn,Qn,记Pk点的坐标为
,k=1,2,3,…,n,现已知x1=2.

(1)求Q2、Q3的坐标;
(2)试求xk(1≤k≤n)的通项公式;
(3)点Pn、Pn+1之间的距离记为|PnPn+1|(n∈N*),是否存在最小的正实数t,使得
t对一切的自然数n恒成立?若存在,求t的值,若不存在,请说明理由






(1)求Q2、Q3的坐标;
(2)试求xk(1≤k≤n)的通项公式;
(3)点Pn、Pn+1之间的距离记为|PnPn+1|(n∈N*),是否存在最小的正实数t,使得

若等比数列
的公比为
,则关于
、
的二元一次方程组
的解的情况,下列说法正确的是( )





A.对任意![]() ![]() |
B.对任意![]() ![]() |
C.当且仅当![]() |
D.当且仅当![]() |