- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- + 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(江苏省南京师大附中2018届高三高考考前模拟考试数学试题)已知等差数列{an}和等比数列{bn}均不是常数列,若a1=b1=1,且a1,2a2,4a4成等比数列, 4b2,2b3,b4成等差数列.
(1)求{an}和{bn}的通项公式;
(2)设m,n是正整数,若存在正整数i,j,k(i<j<k),使得ambj,amanbi,anbk成等差数列,求m+n的最小值;
(3)令cn=
,记{cn}的前n项和为Tn,{
}的前n项和为An.若数列{pn}满足p1=c1,且对"n≥2, n∈N*,都有pn=
+Ancn,设{pn}的前n项和为Sn,求证:Sn<4+4lnn.
(1)求{an}和{bn}的通项公式;
(2)设m,n是正整数,若存在正整数i,j,k(i<j<k),使得ambj,amanbi,anbk成等差数列,求m+n的最小值;
(3)令cn=



设
,且f(x)=x有唯一解,
,xn+1=f(xn)(n∈N*).
(1)求实数a的值;
(2)求数列{xn}的通项公式;
(3)若
,数列b1,b2-b1,b3-b2,…,bn-bn-1是首项为1,公比为
的等比数列,记cn=anbn,求数列{cn}的前n项和Sn.


(1)求实数a的值;
(2)求数列{xn}的通项公式;
(3)若

