- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 根据数列递推公式写出数列的项
- 由递推关系式求通项公式
- 由递推数列研究数列的有关性质
- 求递推关系式
- + 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将边长分别为
的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第1个、第2个、……、第
个阴影部分图形.设前
个阴影部分图形的面积的平均值为
.记数列
满足:
.

(1)求
的表达式及数列
的通项公式;
(2)记
若
,其中
为常数,且
恒成立,求
的取值范围.







(1)求


(2)记







“斐波那契数列”由13世纪意大利数学家斐波那契发现,因为斐波那契以兔子繁殖为例子而引入,故又称该数列为“兔子数列”,斐波那契数列
满足:
,
,
,记其前
项和为
,则
( )







A.![]() | B.![]() | C.![]() | D.![]() |
已知有穷数列
,
,
,
,
.若数列
中各项都是集合
的元素,则称该数列为
数列.对于
数列
,定义如下操作过程
:从
中任取两项
,
,将
的值添在
的最后,然后删除
,
,这样得到一个
项的新数列
(约定:一个数也视作数列).若
还是
数列,可继续实施操作过程
,得到的新数列记作
,
,如此经过
次操作后得到的新数列记作
.
(1)设
,
,
请写出
的所有可能的结果;
(2)求证:对于一个
项的
数列
操作
总可以进行
次;
(3)设
,
,
,
,
,
,
,
,
,
求
的可能结果,并说明理由.



























(1)设




(2)求证:对于一个





(3)设











古印度“汉诺塔问题”:一块黄铜平板上装着
三根金铜石细柱,其中细柱
上套着个大小不等的环形金盘,大的在下、小的在上.将这些盘子全部转移到另一根柱子上,移动规则如下:一次只能将一个金盘从一根柱子转移到另外一根柱子上,不允许将较大盘子放在较小盘子上面.若
柱上现有
个金盘(如图),将
柱上的金盘全部移到
柱上,至少需要移动次数为( )








A.![]() | B.![]() | C.![]() | D.![]() |