,若存在常数,使得对任意,均有,则称为有界集合,同时称为集合的上界.
(1)设,试判断是否为有界集合,并说明理由;
(2)已知,记).若
,且为有界集合,求的值及的取值范围;
(3)设均为正数,将中的最小数记为.是否存在正数,使得为有界集合均为正数的上界,若存在,试求的最小值;若不存在,请说明理由.
当前题号:1 | 题型: | 难度:0.99
设整数集合,其中 ,且对于任意,若,则
(1)请写出一个满足条件的集合;
(2)证明:任意;
(3)若,求满足条件的集合的个数.
当前题号:2 | 题型:解答题 | 难度:0.99
定义集合与集合之差是由所有属于且不属于的元素组成的集合,记作 且.已知集合
(Ⅰ)若集合,写出集合的所有元素;
(Ⅱ)从集合选出10个元素由小到大构成等差数列,其中公差的最大值和最小值分别是多少?公差为的等差数列各有多少个?
(Ⅲ)设集合,且集合中含有10个元素,证明:集合中必有10个元素组成等差数列.
当前题号:3 | 题型:解答题 | 难度:0.99
间的整数为分子,以为分母组成分数集合,其所有元素和为;以间的整数为分子,以为分母组成不属于集合的分数集合,其所有元素和为;……,依次类推以间的整数为分子,以为分母组成不属于的分数集合,其所有元素和为;则________.
当前题号:4 | 题型:填空题 | 难度:0.99