- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 根据数列递推公式写出数列的项
- 由递推关系式求通项公式
- 由递推数列研究数列的有关性质
- 求递推关系式
- + 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
,若存在常数
,使得对任意
,均有
,则称
为有界集合,同时称
为集合
的上界.
(1)设
、
,试判断
、
是否为有界集合,并说明理由;
(2)已知
,记
(
).若
,
,且
为有界集合,求
的值及
的取值范围;
(3)设
均为正数,将
中的最小数记为
.是否存在正数
,使得
为有界集合
,
均为正数
的上界,若存在,试求
的最小值;若不存在,请说明理由.







(1)设




(2)已知








(3)设









定义集合
与集合
之差是由所有属于
且不属于
的元素组成的集合,记作
且
.已知集合
.
(Ⅰ)若集合
,写出集合
的所有元素;
(Ⅱ)从集合
选出10个元素由小到大构成等差数列,其中公差的最大值
和最小值
分别是多少?公差为
和
的等差数列各有多少个?
(Ⅲ)设集合
,且集合
中含有10个元素,证明:集合
中必有10个元素组成等差数列.







(Ⅰ)若集合


(Ⅱ)从集合





(Ⅲ)设集合



以
间的整数为分子
,以
为分母组成分数集合
,其所有元素和为
;以
间的整数为分子,以
为分母组成不属于集合
的分数集合
,其所有元素和为
;……,依次类推以
间的整数为分子,以
为分母组成不属于
的分数集合
,其所有元素和为
;则
________.















