- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念
- 递增数列与递减数列
- 有穷数列和无穷数列
- + 递推数列
- 根据数列递推公式写出数列的项
- 由递推关系式求通项公式
- 由递推数列研究数列的有关性质
- 求递推关系式
- 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设数列{an} 满足a1=a,
=can+1﹣c(n∈N*),其中a、c为实数,且c≠0.
(1)求数列{an} 的通项公式;
(2)设a=
,c=
,bn=n(1﹣an)(n∈N*),求数列 {bn}的前n项和Sn.

(1)求数列{an} 的通项公式;
(2)设a=


定义:对于数列
,如果存在常数
,使对任意正整数
,总有
成立,那么我们称数列
为“
﹣摆动数列”.
①若
,
,
,则数列
_____“
﹣摆动数列”,
_____“
﹣摆动数列”(回答是或不是);
②已知“
﹣摆动数列”
满足
,
.则常数
的值为_____.






①若







②已知“




