- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断数列的增减性
- + 确定数列中的最大(小)项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若数列
的每一项都不等于零,且对于任意的
,都有
(
为常数),则称数列
为“类等比数列”;已知数列
满足:
,对于任意的
,都有
;
(1)求证:数列
是“类等比数列”;
(2)若
是单调递减数列,求实数
的取值范围;
(3)若
,求数列
的前
项之积取最大值时
的值;










(1)求证:数列

(2)若


(3)若




定义max{x1,x2,x3,…,xn}表示x1,x2,x3,…,xn中的最大值.已知数列an=
,bn=
,cn=
,其中n+m+p=200,m=kn,n,m,p,k∈N*.记dn=max{an,bn,cn}
(Ⅰ)求max{an,bn}
(Ⅱ)当k=2时,求dn的最小值;
(Ⅲ)∀k∈N*,求dn的最小值.



(Ⅰ)求max{an,bn}
(Ⅱ)当k=2时,求dn的最小值;
(Ⅲ)∀k∈N*,求dn的最小值.
已知等比数列
的首项
,数列
前
项和记为
.
(1) 若
,求等比数列
的公比
;
(2) 在(1)的条件下证明:
;
(3) 数列
前
项积记为
,在(1)的条件下判断
与
的大小,并求
为何值时,
取得最大值.





(1) 若



(2) 在(1)的条件下证明:

(3) 数列







设数列
的前
项和为
,对任意
,点
都在函数
的图象上.
(1)求
,归纳数列
的通项公式(不必证明).
(2)将数列
依次按
项、
项、
项、
项、
项循环地分为
,
,
,
,各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值.
(3)设
为数列
的前
项积,若不等式
对一切
都成立,其中
,求
的取值范围.






(1)求


(2)将数列













(3)设






