- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断数列的增减性
- + 确定数列中的最大(小)项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
的通项公式为
,则数列
( )



A.有最大项,没有最小项 | B.有最小项,没有最大项 |
C.既有最大项又有最小项 | D.既没有最大项也没有最小项 |
已知数列
中,
,
是数列
的前
项和,且
.
(1)求
,
,并求数列
的通项公式
;
(2)设
,数列
的前
项和为
,若
对任意的正整数
都成立,求实数
的取值范围.






(1)求




(2)设







已知等比数列
的前n项和为
,且当
时,
是
与2m的等差中项
为实数
.
(1)求m的值及数列
的通项公式;
(2)令
,是否存在正整数k,使得
对任意正整数n均成立?若存在,求出k的最大值;若不存在,说明理由.







(1)求m的值及数列

(2)令


已知函数
(
为常数,
且
),且数列
是首项为
,公差为
的等差数列.
(1)求证:数列
是等比数列;
(2)若
,当
时,求数列
的前
项和
的最小值;
(3)若
,问是否存在实数
,使得
是递增数列?若存在,求出
的范围;若不存在,说明理由.







(1)求证:数列

(2)若





(3)若




已知非零数列
满足
,
.
(1)求证:数列
是等比数列;
(2)若关于
的不等式
有解,求整数
的最小值;
(3)在数列
中,是否存在首项、第
项、第
项(
),使得这三项依次构成等差数列?若存在,求出所有的
;若不存在,请说明理由.



(1)求证:数列

(2)若关于



(3)在数列




