- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 判断数列的增减性
- 确定数列中的最大(小)项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设满足以下两个条件的有穷数列{
}称为
阶“期待数列”
:
①
;②
.
命题P:{
}是单调递增等差数列;命题Q:{
}是7阶“期待数列”,若
为真命题,则
_____________.



①


命题P:{




已知等差数列{an}的首项a1≠0,前n项和为Sn,且S4+a2=2S3;等比数列{bn}满足b1=a2,b2=a4.
(1)求证:数列{bn}中的每一项都是数列{an}中的项;
(2)若a1=2,设cn=,求数列{cn}的前n项和Tn;
(3)在(2)的条件下,若有f(n)=log3Tn,求f(1)+f(2)+…+f(n)的最大值.
定义数列
,如果存在常数
,使对任意正整数
,总有
,那么我们称数列
为“
—摆动数列”.
(
)设
,
,
,判断数列
,
是否为“
—摆动数列”,并说明理由;
(2)已知“
—摆动数列”
满足:
,求常数
的值.






(







(2)已知“




数列
中,如果存在
,使得“
且
”成立(其中
,
),则称
的值为数列
的一个谷值.
①若
,则
的谷值为__________;
②若
,且数列
不存在谷值,则实数
的取值范围是__________.








①若


②若


