- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,当
,
时,
的值域为
,
,当
,
时,
的值域为
,
,依此类推,一般地,当
,
时,
的值域为
,
,其中
、
为常数,且
,
.
(1)若
,求数列
,
的通项公式;
(2)若
,问是否存在常数
,使得数列
满足
?若存在,求
的值;若不存在,请说明理由;
(3)若
,设数列
,
的前
项和分别为
,
,求
.




















(1)若



(2)若





(3)若







若数列
满足:对任意的
,只有有限个正整数
使得
成立,记这样的
的个数为
,则得到一个新数列
.例如,若数列
是1,2,
,
,
,则数列
是0,1,2,
,
已知对任意的
,
,则



















A.![]() | B.![]() | C.![]() | D.![]() |
已知等比数列
的公比
,且
,
是
、
的等差中项.
(1)求数列
的通项公式;
(2)试比较
与
的大小,并说明理由;
(3)若数列
满足
,在每两个
与
之间都插入
个2,使得数列
变成了一个新的数列
,试问:是否存在正整数
,使得数列
的前
项和
?如果存在,求出
的值;如果不存在,说明理由.






(1)求数列

(2)试比较


(3)若数列











