- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若存在满足下列三个条件的集合
,
,
,则称偶数
为“萌数”:
①集合
,
,
为集合
的
个非空子集,
,
,
两两之间的交集为空集,且
;②集合
中的所有数均为奇数,集合
中的所有数均为偶数,所有
的倍数都在集合
中;③集合
,
,
所有元素的和分别为
,
,
,且
.注:
.
(1)判断:
是否为“萌数”?若为“萌数”,写出符合条件的集合
,
,
,若不是“萌数”,说明理由.
(2)证明:“
”是“偶数
为萌数”成立的必要条件.




①集合





















(1)判断:




(2)证明:“


设集合
均为实数集
的子集,记
.
(1)已知
,试用列举法表示
;
(2)设
,当
且
时,曲线
的焦距为
,如果
,
,设
中的所有元素之和为
,求
的值;
(3)在(2)的条件下,对于满足
,且
的任意正整数
,不等式
恒成立,求实数
的最大值.



(1)已知


(2)设










(3)在(2)的条件下,对于满足




