- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
记
为不超过实数x的最大整数,例如:

,设a为正整数,数列
满足:

,现有下列命题:
①当
时,数列
的前3项依次为5,3,2;
②对数列
都存在正整数k,当
时,总有
;
③当
时,
;
④对某个正整数k,若
,则
;
其中的真命题个数为( )








①当


②对数列



③当


④对某个正整数k,若


其中的真命题个数为( )
A.4 | B.3 | C.2 | D.1 |
已知
,
为常数,且为正整数,
为质数且大于2,无穷数列
的各项均为正整数,其前n项和为
,对任意正整数
,数列
中任意两不同项的和构成集合A.
(1)证明无穷数列
为等比数列,并求
的值;
(2)如果
,求
的值;
(3)当
,设集合
中元素的个数记为
,求
.








(1)证明无穷数列


(2)如果


(3)当




数列
满足
.
①存在
可以生成的数列
是常数数列;
②“数列
中存在某一项
”是“数列
为有穷数列”的充要条件;
③若
为单调递增数列,则
的取值范围是
;
④只要
,其中
,则
一定存在;
其中正确命题的序号为__________.


①存在


②“数列



③若



④只要



其中正确命题的序号为__________.