- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 距离测量问题
- 高度测量问题
- 角度测量问题
- 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,某观测站C在城A的南偏西
的方向,从城A出发有一条走向为南偏东
的公路,在C处观测到距离C处
km的公路上的B处有一辆汽车正沿公路向A城驶去,行驶了6km后到达D处,测得C,D两处的距离为2km,这时此车距离A城_______km.




如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,小区的两个出入口设置在点A及点C处,且小区里有一条平行于BO的小路CD,已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米).

某巡逻艇在
处发现在北偏东
距
处8海里处有一走私船,正沿东偏南
的方向以
海里/小时的速度向我岸行驶,巡逻艇立即以
海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇航行方向.







如图所示,已知
、
两点的距离为
海里,
在
的北偏东
处,甲船自
以
海里/小时的速度向
航行,同时乙船自
以
海里/小时的速度沿方位角
方向航行。问航行几小时两船之间的距离最短?













在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南
方向300km的海面P处,并以20km/h的速度向西偏北
方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?



某游乐园的摩天轮最高点距离地面108米,直径长是98米,均速旋转一圈需要18分钟.如果某人从摩天轮的最低点
处登上摩天轮并开始计时,那么:

(1)当此人第四次距离地面
米时用了多少分钟?
(2)当此人距离地面不低于
米时可以看到游乐园的全貌,求摩天轮旋转一圈中有多少分钟可以看到游乐园的全貌?


(1)当此人第四次距离地面

(2)当此人距离地面不低于

在海岸A处,发现北偏东
方向,距离A为(
)海里的B处有一艘走私船,在A处北偏西
方向距离A为
海里的C处有我方一艘辑私艇奉命以
海里/小时的速度追截走私船,B在C的正东方向,此时走私船正以
海里/小时的速度从B处向北偏东
方向逃窜,问辑私艇沿什么方向,才能最快追上走私船?









某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A、B、C三地位于同一水平面上,在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,
,在A地听到弹射声音的时间比在B地晚
秒.A地测得该仪器弹至最高点H时的仰角为30°.

(1)求A、C两地的距离;
(2)求该仪器的垂直弹射高度CH.(声音的传播速度为340米/秒)



(1)求A、C两地的距离;
(2)求该仪器的垂直弹射高度CH.(声音的传播速度为340米/秒)
如图,
三个警亭有直道相通,已知
在
的正北方向6千米处,
在
的正东方向
千米处.
(1)警员甲从
出发,沿
行至点
处,此时
,求
的距离;
(2)警员甲从
出发沿
前往
,警员乙从
出发沿
前往
,两人同时出发,甲的速度为3千米/小时,乙的速度为6千米/小时.两人通过专用对讲机保持联系,乙到达
后原地等待,直到甲到达
时任务结束.若对讲机的有效通话距离不超过9千米,试问两人通过对讲机能保持联系的总时长?






(1)警员甲从





(2)警员甲从









如图,为测量一座山的高度,某勘测队在水平方向的观察点A,B测得山顶的仰角分别为α,β,且该两点间的距离是l米,则此山的竖直高度h为__________ 米(用含α,β,l的式子表达).
