刷题首页
题库
高中数学
题干
在半径为6的圆内,作内接等腰三角形,当底边上高为_______时它的面积最大。
上一题
下一题
0.99难度 填空题 更新时间:2018-12-22 05:33:53
答案(点此获取答案解析)
同类题1
在半径为
r
的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为
A.
B.
r
C.
r
D.
r
同类题2
某粮库拟建一个储粮仓如图所示,其下部是高为2的圆柱,上部是母线长为2的圆锥,现要设计其底面半径和上部圆锥的高,若设圆锥的高
为
,储粮仓的体积为
.
(1)求
关于
的函数关系式;(圆周率用
表示)
(2)求
为何值时,储粮仓的体积最大.
同类题3
用边长为
的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转
角,再焊接成水箱,则水箱最大容积为
A.
B.
C.
D.
同类题4
如图,从一个面积为
的半圆形铁皮上截取两个高度均为
的矩形,并将截得的两块矩形铁皮分别以
,
为母线卷成两个高均为
的圆柱(无底面,连接部分材料损失忽略不计).记这两个圆柱的体积之和为
.
(1)将
表示成
的函数关系式,并写出
的取值范围;
(2)求两个圆柱体积之和
的最大值.
同类题5
如图,一个角形海湾AOB,∠AOB=2θ(常数θ为锐角).拟用长度为l(l为常数)的围网围成一个养殖区,有以下两种方案可供选择:
方案一 如图1,围成扇形养殖区OPQ,其中
=l;
方案二 如图2,围成三角形养殖区OCD,其中CD=l;
(1)求方案一中养殖区的面积S
1
;
(2)求证:方案二中养殖区的最大面积S
2
=
;
(3)为使养殖区的面积最大,应选择何种方案?并说明理由.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题