刷题首页
题库
高中数学
题干
如图,有一边长为6的正方形铁片,在铁片的四角各截去一个边长为
的小正方形后,沿图中虚线部分折起,做成一个无盖方盒.
(1)试用
表示方盒的容积
,并写出
的范围;
(2)求方盒容积
的最大值及相应
的值.
上一题
下一题
0.99难度 解答题 更新时间:2017-07-08 12:08:58
答案(点此获取答案解析)
同类题1
传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在弯形时永远保持为圆柱体,其底面半径原为
且以每秒
等速率缩短,而长度以每秒
等速率增长.已知神针的底面半径只能从
缩到
为止,且知在这段变形过程中,当底面半径为
时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为__________
.
同类题2
用长为
,宽为
的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转
,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?
同类题3
如图,半圆
是某爱国主义教育基地一景点的平面示意图,半径
的长为
百米.为了保护景点,基地管理部门从道路
上选取一点
,修建参观线路
,且
,均与半圆相切,四边形
是等腰梯形,设
百米,记修建每
百米参观线路的费用为
万元,经测算
.
(1)用
表示线段
的长;
(2)求修建参观线路的最低费用.
同类题4
某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计),易拉罐的体积为
,设圆柱的高度为
,底面半径为
,且
,
假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为
元
,易拉罐上下底面的制造费用均为
元
为常数).
(1)写出易拉罐的制造费用
(元)关于
的函数表达式,并求其定义域;
(2)求易拉罐制造费用最低时
的值.
同类题5
有两个相同的直三棱柱,高为
,底面三角形的三边长分别为
。用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则
的取值范围是_________
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题