某制瓶厂要制造一批轴截面如图所示的瓶子,瓶子是按照统一规格设计的,瓶体上部为半球体,下部为圆柱体,并保持圆柱体的容积为3π.设圆柱体的底面半径为x,圆柱体的高为h,瓶体的表面积为S.
(1)写出S关于x的函数关系式;
(2)如何设计瓶子的尺寸(不考虑瓶壁的厚度),可以使表面积S最小,并求出最小值.
当前题号:1 | 题型:解答题 | 难度:0.99
已知横梁的强度和它的矩形横断面的长的平方与宽的乘积成正比,要将直径为d的圆木锯成强度最大的横梁,则横断面的长和宽分别为   ( )
A. d, dB. d, d
C. d, dD. d, d
当前题号:2 | 题型:单选题 | 难度:0.99
要制作一个容积为2π m3的圆柱形储油罐(有盖),为使所用的材料最省,它的底面半径与高分别为   ( )
A.0.5 m,1 mB.1 m,1 m
C.1 m,2 mD.2 m,2 m
当前题号:3 | 题型:单选题 | 难度:0.99
要设计一个容积为的有盖圆柱形容器,已知侧面的单位面积造价是底面单位面积造假的一半,而盖的单位面积造价是侧面单位面积的造价一半,问容器的底面半径与高之比为何值时,总造价最低.
当前题号:4 | 题型:解答题 | 难度:0.99
已知一块半径为的残缺的半圆形材料O为半圆的圆心,,残缺部分位于过点的竖直线的右侧.现要在这块材料上截出一个直角三角形,有两种设计方案:如图甲,以为斜边;如图乙,直角顶点在线段上,且另一个顶点 上.要使截出的直角三角形的面积最大,应该选择哪一种方案?请说明理由,并求出截得直角三角形面积的最大值.
当前题号:5 | 题型:解答题 | 难度:0.99
某工艺品厂要设计一个如图1所示的工艺品,现有某种型号的长方形材料如图2所示,其周长为4m,这种材料沿其对角线折叠后就出现图1的情况.如图,ABCD(AB>AD)为长方形的材料,沿AC折叠后AB'交DC于点P,设△ADP的面积为S2 , 折叠后重合部分△ACP的面积为S1 .
(Ⅰ)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;
(Ⅱ)求面积S2最大时,应怎样设计材料的长和宽?
(Ⅲ)求面积(S1+2S2)最大时,应怎样设计材料的长和宽?
当前题号:6 | 题型:解答题 | 难度:0.99
如图,AOB是一块半径为r的扇形空地,.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若,设

(Ⅰ)记活动场地与停车场占地总面积为,求的表达式;
(Ⅱ)当为何值时,可使活动场地与停车场占地总面积最大.
当前题号:7 | 题型:解答题 | 难度:0.99
如图所示,四边形ABCD为边长为2的菱形,∠B=60°,点E,F分别在边BC,AB上运动(不含端点),且EF//AC,沿EF把平面BEF折起,使平面BEF⊥底面ECDAF,当五棱锥B-ECDAF的体积最大时,EF的长为 ( )

A.1B.C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
为丰富市民的文化生活,市政府计划在一块半径为100m的扇形土地OAB上建造市民广场.规划设计如图:矩形EFGH(其中E,F在圆弧AB上,G,H在弦AB上)区域为运动休闲区,△OAB区域为文化展示区,其余空地为绿化区域,已知P为圆弧AB中点,OP交AB于M,cos∠POB=,记矩形EFGH区域的面积为Sm2

(1)设∠POF=θ(rad),将S表示成θ的函数;
(2)求矩形EFGH区域的面积S的最大值.
当前题号:9 | 题型:解答题 | 难度:0.99