刷题首页
题库
高中数学
题干
已知一块半径为
的残缺的半圆形材料
,
O
为半圆的圆心,
,残缺部分位于过点
的竖直线的右侧.现要在这块材料上截出一个直角三角形,有两种设计方案:如图甲,以
为斜边;如图乙,直角顶点
在线段
上,且另一个顶点
在
上.要使截出的直角三角形的面积最大,应该选择哪一种方案?请说明理由,并求出截得直角三角形面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-22 01:16:17
答案(点此获取答案解析)
同类题1
用一张
长方形纸片,经过折叠以后,糊成了一个无盖的长方体形纸盒,这个纸盒的最大容积是_________
.
同类题2
如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD及其矩形附属设施EFGH,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O,半径为R,矩形的一边AB在直径上,点C、D、G、H在圆周上,E、F在边CD上,且
,设
.
(1)记游泳池及其附属设施的占地面积为
,求
的表达式;
(2)当
为何值时,能符合园林局的要求?
同类题3
某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为
的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形
为中心在圆心的矩形,现计划将矩形
区域设计为可推拉的窗口.
(1)若窗口
为正方形,且面积大于
(木条宽度忽略不计),求四根木条总长的取值范围;
(2)若四根木条总长为
,求窗口
面积的最大值.
同类题4
如图,AOB是一块半径为r的扇形空地,
.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若
,设
(Ⅰ)记活动场地与停车场占地总面积为
,求
的表达式;
(Ⅱ)当
为何值时,可使活动场地与停车场占地总面积最大.
同类题5
底面为正多边形,顶点在底面的射影为底面多边形中心的棱锥为正棱锥,则半径为2的球的内接正四棱锥的体积最大值为__________.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题
三角函数在生活中的应用