- 集合与常用逻辑用语
- 函数与导数
- 利润最大问题
- + 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
国务院批准从2009年起,将每年8月8日设置为“全民健身日”,为响应国家号召,各地利用已有土地资源建设健身场所.如图,有一个长方形地块
,边
为
,
为
.地块的一角是草坪(图中阴影部分),其边缘线
是以直线
为对称轴,以
为顶点的抛物线的一部分.现要铺设一条过边缘线
上一点
的直线型隔离带
,
,
分别在边
,
上(隔离带不能穿越草坪,且占地面积忽略不计),将隔离出的
作为健身场所.则
的面积为
的最大值为____________ (单位:
).




















如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

如图,将边长为6的等边三角形各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正三棱柱形的容器.

(1)若这个容器的底面边长为
,容积为
,写出
关于
的函数关系式并注明定义域;
(2)求这个容器容积的最大值.

(1)若这个容器的底面边长为




(2)求这个容器容积的最大值.
如图,有一矩形钢板ABCD缺损了一角(如图所示),边缘线OM上每一点到点D的距离都等于它到边AB的距离.工人师傅要将缺损的一角切割下来使剩余部分成一个五边形,若AB=1m,AD=0.5m,则五边形ABCEF的面积最大值为____m2.

如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )


A.![]() | B.![]() | C.![]() | D.![]() |
有四根长都为2的直铁条,若再选两根长都为
的直铁条,使这六根铁条端点处相连能够焊接成一个对棱相等的三棱锥形的铁架,则此三棱锥体积的取值范围是( )

A.![]() | B.![]() | C.![]() | D.![]() |
将半径为
的圆形铁皮剪去一个圆心角为
的扇形,用剩下的扇形铁皮制成一个圆锥形的容器,该圆锥的高记为
,体积为
.

(1)求体积
有关
的函数解析式.
(2)求当扇形的圆心角
多大时,容器的体积
最大.





(1)求体积


(2)求当扇形的圆心角

