刷题首页
题库
高中数学
题干
某制瓶厂要制造一批轴截面如图所示的瓶子,瓶子是按照统一规格设计的,瓶体上部为半球体,下部为圆柱体,并保持圆柱体的容积为3π
.
设圆柱体的底面半径为
x
,圆柱体的高为
h
,瓶体的表面积为
S.
(1)写出
S
关于
x
的函数关系式;
(2)如何设计瓶子的尺寸(不考虑瓶壁的厚度),可以使表面积
S
最小,并求出最小值
.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-11 09:08:43
答案(点此获取答案解析)
同类题1
在正三棱锥
内,有一半球,其底面与正三棱锥的底面重合,且与正正三棱锥的三个侧面都相切,若半球的半径为
,则正三棱锥的体积最小时,其高等于______.
同类题2
如图,以两条互相垂直的公路所在直线分别为x轴,y轴建立平面直角坐标系,公路附近有一居民区EFG和一风景区,其中
单位:百米
,
,风景区的部分边界为曲线C,曲线C的方程为
,拟在居民和风景区间辟出一个三角形区域EMN用于工作人员办公,点M,N分别在x轴和EF上,且MN与曲线C相切于P点.
设P点的横坐标为t,写出
面积的函数表达式
;
当t为何值时,
面积最小?并求出最小面积.
同类题3
用长为18米的篱笆借助一墙角围成一个矩形
(如图所示),在点
处有一棵树(忽略树的直径)距两墙的距离分别为
米和
米,现需要将此树圈进去,设矩形
的面积为
(平方米),长
为
(米).
(1)设
,求
的解析式并指出其定义域;
(2)试求
的最小值
.
同类题4
某种儿童型防蚊液储存在一个容器中,该容器由两个半球和一个圆柱组成,(其中上半球是容器的盖子,防蚊液储存在下半球及圆柱中),容器轴截面如图所示,两头是半圆形,中间区域是矩形
,其外周长为
毫米.防蚊液所占的体积为圆柱体积和一个半球体积之和.假设
的长为
毫米.(注:
,其中
为球半径,
为圆柱底面积,
为圆柱的高)
(1)求容器中防蚊液的体积
关于
的函数关系式;
(2)如何设计
与
的长度,使得
最大?
同类题5
如图边长为2的正方形花园的一角是以A为中心,1为半径的扇形水池.现需在其余部分设计一个矩形草坪PNCQ,其中P是水池边上任意一点,点N、Q分别在边BC和CD上,设∠PAB为θ.
(I)用θ表示矩形草坪PNCQ的面积,并求其最小值;
(II)求点P到边BC和AB距离之比
的最小值.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题