如图,曲边三角形中,线段是直线的一部分,曲线段是抛物线的一部分.矩形的顶点分别在线段,曲线段轴上.设点,记矩形的面积为.

(Ⅰ)求函数的解析式并指明定义域;
(Ⅱ)求函数的最大值.
当前题号:1 | 题型:解答题 | 难度:0.99
如图所示,正方形的边长为2,切去阴影部分围成一个正四棱锥,则当正四棱锥的侧面积取值范围为(    )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
设四棱锥的底面是一个正方形,5 个顶点都在一个半径为1的球面上,则四棱锥的体积的最大值为__________.
当前题号:3 | 题型:填空题 | 难度:0.99
用一根长为分米的铁丝制作一个长方体框架(由12条棱组成),使得长方体框架的底面长是宽的倍.在制作时铁丝恰好全部用完且损耗忽略不计.现设该框架的底面宽是分米,用表示该长方体框架所占的空间体积(即长方体的体积).
(1)试求函数的解析式及其定义域;
(2)当该框架的底面宽取何值时,长方体框架所占的空间体积最大,并求出最大值.
当前题号:4 | 题型:解答题 | 难度:0.99
已知圆锥的底面直径为1,母线长为1,过该圆锥的顶点作圆锥的截面,则截面面积的最大值为__________.
当前题号:5 | 题型:填空题 | 难度:0.99
如图,一个角形海湾AOB,∠AOB=2θ(常数θ为锐角).拟用长度为l(l为常数)的围网围成一个养殖区,有以下两种方案可供选择:
方案一 如图1,围成扇形养殖区OPQ,其中=l;
方案二 如图2,围成三角形养殖区OCD,其中CD=l;

(1)求方案一中养殖区的面积S1
(2)求证:方案二中养殖区的最大面积S2
(3)为使养殖区的面积最大,应选择何种方案?并说明理由.
当前题号:6 | 题型:解答题 | 难度:0.99
如图,圆形纸片的圆心为,半径为,该纸片上的正方形的中心为为圆上的点,分别是以为底边的等腰三角形,沿虚线剪开后,分别以为折痕折起,使重合得到一个四棱锥,则该四棱锥的体积的最大值为_______. 
当前题号:7 | 题型:填空题 | 难度:0.99
已知边长为2的等边三角形中,分别为边上的点,且,将沿折成,使平面平面,则几何体的体积的最大值为(   )
A.B.C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
将一个半径为3dm,圆心角为的扇形铁皮焊接成一个容积为V(dm3)的圆锥形无盖容器(忽略损耗).
(1)求V关于的函数关系式
(2)当为何值时,V取得最大值
(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5dm的球?请说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
用长为 ,宽为  的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转 ,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?

当前题号:10 | 题型:解答题 | 难度:0.99