刷题首页
题库
高中数学
题干
用长为
,宽为
的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转
,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?
上一题
下一题
0.99难度 解答题 更新时间:2018-06-19 11:24:41
答案(点此获取答案解析)
同类题1
已知边长为2的等边三角形
中,
、
分别为
、
边上的点,且
,将
沿
折成
,使平面
平面
,则几何体
的体积的最大值为( )
A.
B.
C.
D.
同类题2
现将一根长为180 cm的木条制造成一个长方体形状的木质框架,要求长方体的长与宽之比为
,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
同类题3
利用一半径为4cm的圆形纸片(圆心为O)制作一个正四棱锥.方法如下:
(1)以O为圆心制作一个小的圆;
(2)在小的圆内制作一内接正方形ABCD;
(3)以正方形ABCD的各边向外作等腰三角形,使等腰三角形的顶点落在大圆上(如图);
(4)将正方形ABCD作为正四棱锥的底,四个等腰三角形作为正四棱锥的侧面折起,使四个等腰三角形的顶点重合,问:要使所制作的正四棱锥体积最大,则小圆的半径为
A.
B.
C.
D.
同类题4
扇形
中,半径
,
,在
的延长线上有一动点
,过点
作
与半圆弧
相切于点
,且与过点
所作的
的垂线交于点
,此时显然有CO=CD,DB=DE,问当OC多长时,直角梯形
面积最小,并求出这个最小值.
同类题5
如图,将边长为2的正六边形铁皮的六个角各剪去一个全等四边形,再折起做一个无盖正六棱柱容器,其容积最大时,底面边长为_______.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题