刷题首页
题库
高中数学
题干
用长为
,宽为
的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转
,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?
上一题
下一题
0.99难度 解答题 更新时间:2018-06-19 11:24:41
答案(点此获取答案解析)
同类题1
有四根长都为2的直铁条,若再选两根长都为
的直铁条,使这六根铁条端点处相连能够焊接成一个对棱相等的三棱锥形的铁架,则此三棱锥体积的取值范围是( )
A.
B.
C.
D.
同类题2
用边长为
的正方形铁皮做一个无盖的铁盒,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒,当铁盒的容积最大时,截去的小正方形的边长为( )
A.
B.
C.
D.
同类题3
已知一块半径为
的残缺的半圆形材料
,
O
为半圆的圆心,
,残缺部分位于过点
的竖直线的右侧.现要在这块材料上截出一个直角三角形,有两种设计方案:如图甲,以
为斜边;如图乙,直角顶点
在线段
上,且另一个顶点
在
上.要使截出的直角三角形的面积最大,应该选择哪一种方案?请说明理由,并求出截得直角三角形面积的最大值.
同类题4
已知正四棱锥的侧棱长为
,那么当该棱锥体积最大时,它的高为( )
A.1
B.
C.2
D.3
同类题5
已知某长方体的棱长之和为
,长方体底面的一边比另一边长
,问高为多少时长方体体积最大?并求出最大体积是多少?
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题