刷题首页
题库
高中数学
题干
用一根长为
分米的铁丝制作一个长方体框架(由12条棱组成),使得长方体框架的底面长是宽的
倍.在制作时铁丝恰好全部用完且损耗忽略不计.现设该框架的底面宽是
分米,用
表示该长方体框架所占的空间体积(即长方体的体积).
(1)试求函数
的解析式及其定义域;
(2)当该框架的底面宽
取何值时,长方体框架所占的空间体积最大,并求出最大值.
上一题
下一题
0.99难度 解答题 更新时间:2018-05-19 11:40:18
答案(点此获取答案解析)
同类题1
现要制作一个圆锥形漏斗, 其母线长为t,要使其体积最大, 其高为( )
A.
B.
C.
D.
同类题2
图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM = 5 m,BC = 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH =
.
(1)求屋顶面积S关于
的函数关系式;
(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当
为何值时,总造价最低?
同类题3
如图所示的一块长方体木料中,已知
,设
为线段
上一点,则该长方体中经过点
的截面面积的最小值为
.
同类题4
某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计),易拉罐的体积为
,设圆柱的高度为
,底面半径为
,且
,
假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为
元
,易拉罐上下底面的制造费用均为
元
为常数).
(1)写出易拉罐的制造费用
(元)关于
的函数表达式,并求其定义域;
(2)求易拉罐制造费用最低时
的值.
同类题5
如图,某兴趣小组测得菱形养殖区
的固定投食点
到两条平行河岸线
的距离分别为
,河岸线
与该养殖区的最近点
的距离为
,
与该养殖区的最近点
的距离为
.
(1)如图甲,养殖区在投食点
的右侧,若该小组测得
,请据此算出养殖区的面积;
(2)如图乙,养殖区在投食点
的两侧,试在该小组未测得
的大小的情况下,估算出养殖区的最小面积.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题