- 集合与常用逻辑用语
- 函数与导数
- 导数在函数中的其他应用
- + 利用导数解决实际应用问题
- 利润最大问题
- 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若商品的年利润y(万元)与年产量x(万件)的函数关系式为y=-x3+27x+123(x>0),则获得最大利润时的年产量为( )
A.1万件 | B.2万件 | C.3万件 | D.4万件 |
进价为80元的商品,按90元一个售出时,可卖出400个.已知这种商品每个涨价1元,其销售量就减少20个,则获得利润最大时售价应为( )
A.90元 | B.95元 | C.100元 | D.105元 |
某制瓶厂要制造一批轴截面如图所示的瓶子,瓶子是按照统一规格设计的,瓶体上部为半球体,下部为圆柱体,并保持圆柱体的容积为3π.设圆柱体的底面半径为x,圆柱体的高为h,瓶体的表面积为S.
(1)写出S关于x的函数关系式;
(2)如何设计瓶子的尺寸(不考虑瓶壁的厚度),可以使表面积S最小,并求出最小值.
(1)写出S关于x的函数关系式;
(2)如何设计瓶子的尺寸(不考虑瓶壁的厚度),可以使表面积S最小,并求出最小值.

某市在创建全国旅游城市的活动中,对一块以O为圆心,R(R为常数,单位:米)为半径的半圆形荒地进行治理改造,其中弓形BCD区域(阴影部分)种植草坪,△OBD区域用于儿童乐园出租,其余区域用于种植观赏植物.已知种植草坪和观赏植物的成本分别是每平方米5元和55元,儿童乐园出租的利润是每平方米95元.
(1)设∠BOD=θ(单位:弧度),用θ表示弓形BCD的面积S弓=f(θ).
(2)如果该市规划办邀请你规划这块土地,如何设计∠BOD的大小才能使总利润最大?并求出最大值.
(1)设∠BOD=θ(单位:弧度),用θ表示弓形BCD的面积S弓=f(θ).
(2)如果该市规划办邀请你规划这块土地,如何设计∠BOD的大小才能使总利润最大?并求出最大值.

若商品的年利润y(万元)与年产量x(百万件)的函数关系式为y=-x3+27x+123(x>0),则获得最大利润时的年产量为( )
A.1百万件 | B.2百万件 |
C.3百万件 | D.4百万件 |
已知横梁的强度和它的矩形横断面的长的平方与宽的乘积成正比,要将直径为d的圆木锯成强度最大的横梁,则横断面的长和宽分别为 ( )
A. ![]() ![]() | B. ![]() ![]() |
C. ![]() ![]() | D. ![]() ![]() |
要制作一个容积为2π m3的圆柱形储油罐(有盖),为使所用的材料最省,它的底面半径与高分别为 ( )
A.0.5 m,1 m | B.1 m,1 m |
C.1 m,2 m | D.2 m,2 m |
已知某公司生产一种品牌服装的年固定成本为10万元,且每生产1万件,需要另投入1.9万元.设R(x)(单位:万元)为销售收入,根据市场调查知R(x)=
其中x(单位:万件)是年产量.
(1)写出年利润W(单位:万元)关于年产量x的函数解析式.
(2)当年产量为多少时,该公司在这一品牌服装的生产中所获年利润最大?

(1)写出年利润W(单位:万元)关于年产量x的函数解析式.
(2)当年产量为多少时,该公司在这一品牌服装的生产中所获年利润最大?
要设计一个容积为
的有盖圆柱形容器,已知侧面的单位面积造价是底面单位面积造假的一半,而盖的单位面积造价是侧面单位面积的造价一半,问容器的底面半径
与高
之比为何值时,总造价最低.


