- 集合与常用逻辑用语
- 函数与导数
- 导数在函数中的其他应用
- + 利用导数解决实际应用问题
- 利润最大问题
- 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在海岸线l一侧P处有一个美丽的小岛,某旅游公司为方便登岛游客,在l上设立了M,N两个报名接待点,P,M,N三点满足任意两点间的距离为
公司拟按以下思路运作:先将M,N两处游客分别乘车集中到MN之间的中转点Q处
点Q异于M,N两点
,然后乘同一艘游轮由Q处前往P岛
据统计,每批游客报名接待点M处需发车2辆,N处需发车4辆,每辆汽车的运费为20元
,游轮的运费为120元
设
,每批游客从各自报名点到P岛所需的运输总成本为T元.

写出T关于
的函数表达式,并指出
的取值范围;
问:中转点Q距离M处多远时,T最小?












已知函数
的定义域为
,部分对应值如下表.

的导函数
的图象如图所示:下列关于
的命题:
函数
是周期函数;
函数
在
是减函数;
如果当
时,
的最大值是2,那么t的最大值为4;
函数
的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是______.



x | ![]() | 0 | 4 | 5 |
![]() | 1 | 2 | 2 | 1 |













其中正确命题的序号是______.
如图,AOB是一块半径为r的扇形空地,
.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若
,设

(Ⅰ)记活动场地与停车场占地总面积为
,求
的表达式;
(Ⅱ)当
为何值时,可使活动场地与停车场占地总面积最大.




(Ⅰ)记活动场地与停车场占地总面积为


(Ⅱ)当

某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用w与其航行速度x的平方成正比(即:w=kx2,其中k为比例系数);当航行速度为30海里/小时时,每小时的燃料费用为450元,其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时.
(1)请将从甲地到乙地的运输成本y(元)表示为航行速度x(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?.
(1)请将从甲地到乙地的运输成本y(元)表示为航行速度x(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?.
如图为某大河的一段支流,岸线
近似满足
∥
宽度为7
圆
为河中的一个半径为2
的小岛,小镇
位于岸线
上,且满足岸线
现计划建造一条自小镇
经小岛
至对岸
的通道
(图中粗线部分折线段,
在
右侧),为保护小岛,
段设计成与圆
相切,设

(1)试将通道
的长
表示成
的函数,并指出其定义域.
(2)求通道
的最短长.



















(1)试将通道



(2)求通道

为了保护环境,某工厂在政府部门的支持下,进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y(万元)与处理量x(吨)之间的函数关系可近似地表示为:
,且每处理一吨二氧化碳可得价值为20万元的某种化工产品.
(1)当
时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少.

(1)当

(2)当处理量为多少吨时,每吨的平均处理成本最少.
当前,网校教学越来越受到广大学生的喜爱,它已经成为学生课外学习的一种趋势.假设某网校的套题每日的销售量
(单位:千套)与销售价格
(单位:元/套)满足的函数关系式为
,其中
,
为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)则实数
________________;
(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),当销售价格
________________元/套时,网校每日销售套题所获得的利润最大(精确到
).





(1)则实数

(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),当销售价格


某城市在进行规划时,准备设计一个圆形的开放式公园.为达到社会和经济效益双丰收.园林公司进行如下设计,安排圆内接四边形
作为绿化区域,其余作为市民活动区域.其中
区域种植花木后出售,
区域种植草皮后出售,已知草皮每平方米售价为
元,花木每平方米的售价是草皮每平方米售价的三倍. 若
km ,
km
(1)若
km ,求绿化区域的面积;
(2)设
,当
取何值时,园林公司的总销售金额最大. 






(1)若

(2)设


