如图所示,四边形ABCD为边长为2的菱形,∠B=60°,点E,F分别在边BC,AB上运动(不含端点),且EF//AC,沿EF把平面BEF折起,使平面BEF⊥底面ECDAF,当五棱锥B-ECDAF的体积最大时,EF的长为 ( )

A.1B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
为丰富市民的文化生活,市政府计划在一块半径为100m的扇形土地OAB上建造市民广场.规划设计如图:矩形EFGH(其中E,F在圆弧AB上,G,H在弦AB上)区域为运动休闲区,△OAB区域为文化展示区,其余空地为绿化区域,已知P为圆弧AB中点,OP交AB于M,cos∠POB=,记矩形EFGH区域的面积为Sm2

(1)设∠POF=θ(rad),将S表示成θ的函数;
(2)求矩形EFGH区域的面积S的最大值.
当前题号:2 | 题型:解答题 | 难度:0.99
已知六棱锥,底面为正六边形,点在底面的射影为其中心.将该六棱锥沿六条侧棱剪开,使六个侧面和底面展开在同一平面上,若展开后点在该平面上对应的六个点全部落在一个半径为5的圆上,则当正六边形的边长变化时,所得六棱锥体积的最大值为__________.
当前题号:3 | 题型:填空题 | 难度:0.99
已知,则_________.
当前题号:4 | 题型:填空题 | 难度:0.99
据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距两家化工厂(污染源)的污染强度分别为,它们连线上任意一点处(异于两点)的污染指数等于两化工厂对该处的污染指数之和.设
(1)试将表示为的函数;
(2)若,且时,取得最小值,试求的值.
当前题号:5 | 题型:解答题 | 难度:0.99
如图,在圆心角为,半径为的扇形铁皮上截取一块矩形材料,其中点为圆心,点在圆弧上,点在两半径上,现将此矩形铁皮卷成一个以为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱形铁皮罐的容积为.

(1)求圆柱形铁皮罐的容积关于的函数解析式,并指出该函数的定义域;
(2)当为何值时,才使做出的圆柱形铁皮罐的容积最大?最大容积是多少? (圆柱体积公式:为圆柱的底面枳,为圆柱的高)
当前题号:6 | 题型:解答题 | 难度:0.99
把长为的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是(  )
A.B.C.D.
当前题号:7 | 题型:单选题 | 难度:0.99
利用一半径为4cm的圆形纸片(圆心为O)制作一个正四棱锥.方法如下:
(1)以O为圆心制作一个小的圆;
(2)在小的圆内制作一内接正方形ABCD;
(3)以正方形ABCD的各边向外作等腰三角形,使等腰三角形的顶点落在大圆上(如图);
(4)将正方形ABCD作为正四棱锥的底,四个等腰三角形作为正四棱锥的侧面折起,使四个等腰三角形的顶点重合,问:要使所制作的正四棱锥体积最大,则小圆的半径为
A.B.C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x为 (m).
当前题号:9 | 题型:填空题 | 难度:0.99
如图,有一块半圆形的空地,政府计划在空地上建一个矩形的市民活动广场ABCD及矩形的停车场EFGH,剩余的地方进行绿化,其中半圆的圆心为O,半径为r,矩形的一边AB在直径上,点C,D,G,H在圆周上,E,F在边CD上,且∠BOG=60°,设∠BOC=

(1)记市民活动广场及停车场的占地总面积为,求的表达式;
(2)当cos为何值时,可使市民活动广场及停车场的占地总面积最大.
当前题号:10 | 题型:解答题 | 难度:0.99