- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- + 导数的综合应用
- 导数在函数中的其他应用
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图是一个半径为2千米,圆心角为
的扇形游览区的平面示意图
是半径
上一点,
是圆弧
上一点,且
.现在线段
,线段
及圆弧
三段所示位置设立广告位,经测算广告位出租收入是:线段
处每千米为
元,线段
及圆弧
处每千米均为
元.设
弧度,广告位出租的总收入为
元.

(1)求
关于
的函数解析式,并指出该函数的定义域;
(2)试问:
为何值时,广告位出租的总收入最大?并求出其最大值.

















(1)求


(2)试问:

已知函数
,其中
R.
(1)如果曲线
在x=1处的切线斜率为1,求实数
的值;
(2)若函数
的极小值不超过
,求实数
的最小值;
(3)对任意
[1,2],总存在
[4,8],使得
=
成立,求实数
的取值范围.



(1)如果曲线


(2)若函数



(3)对任意





记
分别为函数
的导函数.若存在
,满足
且
,则称
为函数
与
的一个“
点”.
(1)证明:函数
与
不存在“
点”;
(2)若函数
与
存在“
点”,求实数
的值;
(3)已知函数
,
.对任意
,判断是否存在
,使函数
与
在区间
内存在“
点”,并说明理由.









(1)证明:函数



(2)若函数




(3)已知函数







