- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- + 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
记
,其中
为函数
的导数
若对于
,
,则称函数
为D上的凸函数.
求证:函数
是定义域上的凸函数;
已知函数
,
为
上的凸函数.
求实数a的取值范围;
求函数
,
的最小值.

















已知
(m,n为常数),在
处的切线方程为
.
(Ⅰ)求
的解析式并写出定义域;
(Ⅱ)若任意
,使得对任意
上恒有
成立,求实数a的取值范围;
(Ⅲ)若
有两个不同的零点
,求证:
.



(Ⅰ)求

(Ⅱ)若任意



(Ⅲ)若


