- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- + 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(A)设函数
,
.
(1)证明:函数
在
上为增函数;
(2)若方程
有且只有两个不同的实数根,求实数
的值.
(B)已知函数
.
(1)求函数
的最小值;
(2)若存在唯一实数
,使得
成立,求实数
的值.


(1)证明:函数


(2)若方程


(B)已知函数

(1)求函数

(2)若存在唯一实数



已知函数
.
(Ⅰ)若
是函数
是极值点,1是函数
零点,求实数
,
的值和函数
的单调区间;
(Ⅱ) 若对任意
,都存在
(
为自然对数的底数),使得
成立,求实数
的取值范围.

(Ⅰ)若






(Ⅱ) 若对任意




