- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- + 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
为自然对数的底数).
(1)若曲线
在点
(处的切线与曲线
在点
处的切线互相垂直,求函数
在区间
上的最大值;
(2)设函数
,试讨论函数
零点的个数.

(1)若曲线






(2)设函数


已知函数
,
(1)当
,
时,求函数
在
上的最小值;
(2)若函数
在
与
处的切线互相垂直,求
的取值范围;
(3)设
,若函数
有两个极值点
,
,且
,求
的取值范围.


(1)当




(2)若函数




(3)设






已知函数
,(
为常数)
(1)若
①求函数
在区间
上的最大值及最小值。
②若过点
可作函数
的三条不同的切线,求实数
的取值范围。
(2)当
时,不等式
恒成立,求
的取值范围。


(1)若

①求函数


②若过点



(2)当



已知函数
,当
时,
取得极小值
.
(1)求
的值;
(2)记
,设
是方程
的实数根,若对于
定义域中任意的
,
.当
且
时,问是否存在一个最小的正整数
,使得
恒成立,若存在请求出
的值;若不存在请说明理由.
(3)设直线
,曲线
.若直线
与曲线
同时满足下列条件:
①直线
与曲线
相切且至少有两个切点;
②对任意
都有
.则称直线
与曲线
的“上夹线”.
试证明:直线
是曲线
的“上夹线”.




(1)求

(2)记











(3)设直线




①直线


②对任意




试证明:直线

