- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- + 利用导数研究函数的最值
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)当
时,求
的单调区间;
(2)设
,
是曲线
图象上的两个相异的点,若直线
的斜率
恒成立,求实数
的取值范围;
(3)设函数
有两个极值点
,
,且
,若
恒成立,求实数
的取值范围.

(1)当


(2)设






(3)设函数






设函数
在
单调递增,其中
.
(1)求
的值;
(2)若
,当
时,试比较
与
的大小关系(其中
是
的导函数),请写出详细的推理过程;
(3)当
时,
恒成立,求
的取值范围.



(1)求

(2)若






(3)当


