- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- + 利用导数研究函数的极值
- 函数极值的辨析
- 求已知函数的极值
- 根据极值求参数
- 函数(导函数)图象与极值的关系
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=lnx,h(x)=ax(a为实数)
(1)函数f(x)的图象与h(x)的图象没有公共点,求实数a的取值范围
(2)是否存在实数m,使得对任意的
都有函数
的图象在函数
图象的下方?若存在,请求出整数m的最大值;若不存在,说明理由(
)
(1)函数f(x)的图象与h(x)的图象没有公共点,求实数a的取值范围
(2)是否存在实数m,使得对任意的




已知函数
(
).
(1)当
时,求函数
的极值点;
(2)若函数
在区间
上恒有
,求实数
的取值范围;
(3)已知
,且
,在(2)的条件下,证明数列
是单调递增数列.


(1)当


(2)若函数




(3)已知


