- 集合与常用逻辑用语
- 函数与导数
- 用导数判断或证明已知函数的单调性
- + 利用导数求函数的单调区间
- 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数f(x)=ax2–a–lnx,g(x)=
,其中a∈R,e=2.718…为自然对数的底数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.

(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.
若函数
在定义域内给定区间
上存在
,满足
,则称函数
是
上的“平均值函数”,
是它的一个均值点.例如
是
上的“平均值函数”,0是它的均值点. 若
是区间
上的“平均值函数”,
是它的一个均值点,则
的大小关系是()













A.![]() | B.![]() | C.![]() | D.![]() |
已知函数
.
(1)若函数
有三个零点
,且
,
,求函数
的单调区间;
(2)若
,
,试问:导函数
在区间(0,2)内是否有零点,并说明理由.
(3)在(2)的条件下,若导函数
的两个零点之间的距离不小于
,求
的取值范围.

(1)若函数





(2)若



(3)在(2)的条件下,若导函数


