- 集合与常用逻辑用语
- 函数与导数
- + 利用导数研究函数的单调性
- 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
函数
在R上可导,下列说法正确的是()

A.若![]() |
B.若![]() ![]() |
C.若![]() |
定义在R上的函数f(x)满足:f′(x)>1﹣f(x),f(0)=3,f′(x)是f(x)的导函数,则不等式exf(x)>ex+2(其中e为自然对数的底数)的解集为( )
A.{x|x>0} | B.{x|x<0} |
C.{x|x<﹣1或x>1} | D.{x|x<﹣1或0<x<1} |
(本小题满分12分)已知函数f(x)=
(e为自然对数的底数).
(1)若a<1,求函数f(x)的单调区间;
(2)若a=1,函数φ(x)=xf(x)+t f ′(x)+
,存在实数x1,x2∈[0,1],使 2φ(x1)<φ(x2)成立,求实数t的取值范围.

(1)若a<1,求函数f(x)的单调区间;
(2)若a=1,函数φ(x)=xf(x)+t f ′(x)+
