- 集合与常用逻辑用语
- 函数与导数
- + 利用导数研究函数的单调性
- 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,
是定义在区间
(
)上的奇函数,令
,并有关于函数
的四个论断:

①若
,对于
内的任意实数
(
),
恒成立;
②函数
是奇函数的充要条件是
;
③若
,
,则方程
必有3个实数根;
④
,
的导函数
有两个零点;
其中所有正确结论的序号是_.






①若





②函数


③若



④




其中所有正确结论的序号是_.