- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将进货单价为80元的商品按90元一个出售时,能卖出400个,根据经验,该商品若每个涨(降)1元,其销售量就减少(增加)20个,为获得最大利润,售价应定为多少?
某公司研发出一款新产品,批量生产前先同时在甲、乙两城市销售30天进行市场调查.调查结果发现:甲城市的日销售量
与天数
的对应关系服从图①所示的函数关系;乙城市的日销售量
与天数
的对应关系服从图②所示的函数关系;每件产品的销售利润
与天数
的对应关系服从图③所示的函数关系,图①是抛物线的一部分.

(Ⅰ)设该产品的销售时间为
,日销售量利润为
,求
的解析式;
(Ⅱ)若在
的销售中,日销售利润至少有一天超过
万元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.









(Ⅰ)设该产品的销售时间为



(Ⅱ)若在


(本小题满分12分)如图所示,一根水平放置的长方体枕木的安全负荷与它的厚度d的平方和宽度a的乘积成正比,同时与它的长度
的平方成反比.

(1)在a>d>0的条件下,将此枕木翻转90°(即宽度变为了厚度),枕木的安全负荷会发生变化吗?变大还是变小?
(2)现有一根横截面为半圆(半圆的半径为R=
)的柱形木材,用它截取成横截面为长方形的枕木,其长度即为枕木规定的长度l,问横截面如何截取,可使安全负荷最大?


(1)在a>d>0的条件下,将此枕木翻转90°(即宽度变为了厚度),枕木的安全负荷会发生变化吗?变大还是变小?
(2)现有一根横截面为半圆(半圆的半径为R=

为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆
及等腰直角三角形
,其中
,为裁剪出面积尽可能大的梯形铁片
(不计损耗),将点
放在弧
上,点
放在斜边
上,且
,设
.
(1)求梯形铁片
的面积
关于
的函数关系式;
(2)试确定
的值,使得梯形铁片
的面积
最大,并求出最大值.










(1)求梯形铁片



(2)试确定




(14分)某商场经营一批进价是每件30元的商品,

价


销![]() ![]() | 30 | 40 | 45 | 50 |
日销售量![]() | 60 | 30 | 15 | 0 |






(2)设经营此商品的日销售利润为




某公司生产一种仪器的固定成本为10000元,每生产一台仪器需增加投入200元,已知总收益满足函数
.
其中x是仪器的月产量(单位:台).
(1)将利润表示为月产量
的函数
;
(2)当月产量x为何值时,公司所获利润最大?最大利润为多少元?
(总收益=总成本﹢利润)

其中x是仪器的月产量(单位:台).
(1)将利润表示为月产量


(2)当月产量x为何值时,公司所获利润最大?最大利润为多少元?
(总收益=总成本﹢利润)
根据市场调查,某种新产品投放市场的30天内,每件销售价格P(元)与时间t(天 t∈N+)的关系满足如图,日销量Q(件)与时间t(天)之间的关系是Q=﹣t+40(t∈N+).
(Ⅰ)写出该产品每件销售价格P与时间t的函数关系式;
(2)在这30天内,哪一天的日销售金额最大?(日销量金额=每件产品销售价格×日销量)
(Ⅰ)写出该产品每件销售价格P与时间t的函数关系式;
(2)在这30天内,哪一天的日销售金额最大?(日销量金额=每件产品销售价格×日销量)

如图所示,有一块半径长为1米的半圆形钢板,现要从中截取一个内接等腰梯形部件
,设梯形部件
的面积为
平方米.

(1)按下列要求写出函数关系式:
①设
(米),将
表示成
的函数关系式;②设
,将
表示成
的函数关系式.
(2)求梯形部件
面积
的最大值.




(1)按下列要求写出函数关系式:
①设






(2)求梯形部件

