- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商店按每件80元的价格,购进时令商品(卖不出去的商品将成为废品)1000件;市场调研推知:当每件售价为100元时,恰好全部售完;当售价每提高1元时,销售量就减少5件;为获得最大利润,请你确定合理的售价,并求出此时的利润;
我们知道:人们对声音有不同的感觉,这与它的强度有关系.声音的强度
用瓦/米2 (
)表示,但在实际测量时,常用声音的强度水平
表示,它们满足以下公式:
(单位为分贝,
,其中
,这是人们平均能听到的最小强度,是听觉的开端).回答以下问题:
(1)树叶沙沙声的强度是
,耳语的强度是
,恬静的无线电广播的强度是
,试分别求出它们的强度水平;
(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,试求声音强度
的范围为多少?






(1)树叶沙沙声的强度是



(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,试求声音强度

为响应国家扩大内需的政策,某厂家拟在2016年举行某一产品的促销获得,经调查测算,该产品的年销量(即该厂的年产量)
万件与年促销费用
万元满足
(
为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2016年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(成产投入成本包括生产固定投入和生产再投入两部分).
(1)求常数
,并将该厂家2016年该产品的利润
万元表示为年促销费用
万元的函数;
(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?




(1)求常数



(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?
(本题满分14分)将52名志愿者分成A,B两组参加义务植树活动,A组种植150捆白杨树苗,B组种植200捆沙棘树苗. 假定A,B两组同时开始植树.
(1)根据历年统计,每名志愿者种植一捆白杨树苗用时
小时,种植一捆沙棘用时
小时,应如何分配A,B两组的人数,使植树活动持续的时间最短?
(2)在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨仍用时
小时,而每名志愿者种植一捆沙棘实际用时
小时,于是,从A组抽调6名志愿者加入B组继续种植,求植树活动持续的时间.
(1)根据历年统计,每名志愿者种植一捆白杨树苗用时


(2)在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨仍用时


某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x人,他们加工完甲型装置所需时间为t1小时,其余工人加工完乙型装置所需时间为t2小时.
设f(x)=t1+t2.
(Ⅰ)求f(x)的解析式,并写出其定义域;
(Ⅱ)当x等于多少时,f(x)取得最小值?
某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出,当床价高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位定一个合适的价格,条件是:①要方便结账,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用x表示床价,用y表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入).
(1)把y表示成x的函数,并求出其定义域;
(2)试确定该宾馆将床位定价为多少时,既符合上面的两个条件,又能使净收入最多?
(1)把y表示成x的函数,并求出其定义域;
(2)试确定该宾馆将床位定价为多少时,既符合上面的两个条件,又能使净收入最多?
如图,一直角墙角的两边足够长,若
处有一棵树(不考虑树的粗细)与两墙的距离分别是
和
(
),现用
长的篱笆,借助墙角围成一个矩形花圃
,设此矩形花圃的最大面积为
,若将这棵树围在矩形花圃内(包括边界),则函数
(单位:
)的图象大致是( )











A.![]() | B.![]() |
C.![]() | D.![]() |
某商人投资81万元建一间工作室,第一年装修费为1万元,以后每年增加2万元,把工作室出租,每年收入租金30万元.
(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?
(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:①年平均利润最大时,以46万元出售该工作室;②纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案?
(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?
(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:①年平均利润最大时,以46万元出售该工作室;②纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案?
一大学生自主创业,拟生产并销售某电子产品
万件(生产量与销售量相等),为扩大影响进行促销,促销费用
(万元)满足
(其中
为正常数).已知生产该产品还需投入成本
万元(不含促销费用),产品的销售价格定为
元/件.
(1)将该产品的利润
万元表示为促销费用
万元的函数;
(2)促销费用投入多少万元时,此大学生所获利润最大?






(1)将该产品的利润


(2)促销费用投入多少万元时,此大学生所获利润最大?