- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
商店出售茶壶和茶杯,茶壶单价为每个20元,茶杯单价为每个5元,该店推出两种促销优惠办法:
(1)买1个茶壶赠送1个茶杯;
(2)按总价打9折付款(即按原价的90%付款).
某顾客需要购买茶壶4个,茶杯若干个,(不少于4个),若以购买茶杯数为x个,付款数为y(元),试分别建立两种优惠办法中y与x之间的函数关系式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更省钱?
某厂每月生产一种投影仪的固定成本为
万元,但每生产100台,需要加可变成本(即另增加投入)
万元,市场对此产品的年需求量为500台,销售的收入函数为
(万元)
,其中
是产品售出的数量(单位:百台)。
(1)求月销售利润
(万元)关于月产量
(百台)的函数解析式;
(2)当月产量为多少时,销售利润可达到最大?最大利润为多少?





(1)求月销售利润


(2)当月产量为多少时,销售利润可达到最大?最大利润为多少?
我国西部某省4A级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数
与第x天近似地满足
(千人),且参观民俗文化村的游客人均消费
近似地满足
(元).
(1)求该村的第x天的旅游收入
(单位千元,1≤x≤30,
)的函数关系;
(2)若以最低日收入的20%作为每一天的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?




(1)求该村的第x天的旅游收入


(2)若以最低日收入的20%作为每一天的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?
为宣传平潭综合试验区的“国际旅游岛”建设,试验区某旅游部门开发了一种旅游纪念产品,每件产品的成本是12元,销售价是16元,月平均销售
件。后该旅游部门通过改进工艺,在保证产品成本不变的基础上,产品的质量和技术含金量提高,于是准备将产品的售价提高。经市场分析,如果产品的销售价提高的百分率为
,那么月平均销售量减少的百分率为
。记改进工艺后,旅游部门销售该纪念品的月平均利润是
(元).
(1)写出
与
的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使该旅游部门销售该纪念品的月平均利润最大.




(1)写出


(2)改进工艺后,确定该纪念品的售价,使该旅游部门销售该纪念品的月平均利润最大.
某货轮匀速行驶在相距
海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为
),其他费用为每小时
元,且该货轮的最大航行速度为
海里/小时.
(1)请将从甲地到乙地的运输成本
(元)表示为航行速度
(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?




(1)请将从甲地到乙地的运输成本


(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?
经市场调查,某商品每吨的价格为x(2<x<14)元时,该商品的月供给量为y1吨,y1=ax﹣16(a≥8);月需求量为y2吨
.当该商品的需求量不小于供给量时,销售量等于供给量;当该商品的需求量小于供给量时,销售量等于需求量.该商品的月销售额f(x)等于月销售量与价格的乘积.
(1)若a=32,问商品的价格为多少元时,该商品的月销售额f(x)最大?
(2)记需求量与供给量相等时的价格为均衡价格.若该商品的均衡价格不低于每吨10元,求实数a的取值范围.

(1)若a=32,问商品的价格为多少元时,该商品的月销售额f(x)最大?
(2)记需求量与供给量相等时的价格为均衡价格.若该商品的均衡价格不低于每吨10元,求实数a的取值范围.
荆州市政府为促进淡水鱼养殖业的发展,将价格控制在适当的范围内,决定对淡水鱼养殖提供政府补贴.设淡水鱼的市场价格为
元/千克,政府补贴为
元/千克.根据市场调查,当
时,淡水鱼的市场日供应量
千克与市场日需求量
千克近似满足关系;
.当市场日供应量与市场日需求量相等时的市场价格称为市场平衡价格.
(1)将市场平衡价格表示为政府补贴的函数,并求其定义域;
(2)为使市场平衡价格不高于10元/千克,政府补贴至少为每千克多少元?






(1)将市场平衡价格表示为政府补贴的函数,并求其定义域;
(2)为使市场平衡价格不高于10元/千克,政府补贴至少为每千克多少元?
某市某水产养殖户进行小龙虾销售,已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价
(元/千克)与时间第
(天)之间的函数关系为:
,日销售量
(千克)与时间第
(天)之间的函数关系如图所示:

(1)求日销售量
与时间
的函数关系式?
(2)哪一天的日销售利润最大?最大利润是多少?
(3)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠
元给村里的特困户,在这前40天中,每天扣除捐赠后的日销售利润随时间
的增大而增大,求
的取值范围.






(1)求日销售量


(2)哪一天的日销售利润最大?最大利润是多少?
(3)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠



小明和爸爸周末到湿地公园进行锻炼,两人上午9:00从公园入口出发,沿相同路线匀速运动,小明15分钟后到达目的地,此时爸爸离出发地的路程为1200米,小明到达目的地后立即按原路匀速返回,与爸爸相遇后,和爸爸一起从原路返回出发地.小明、爸爸在锻炼过程中离出发地的路程与小明出发的时间的函数关系如图.

(1)图中
________,
_______;
(2)求小明和爸爸相遇的时刻.

(1)图中


(2)求小明和爸爸相遇的时刻.